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Agenda – before lunch

● History and standard
● Implementations
● Tools
● Syntax
● Procedural programming
● Object-orientation
● Functions as first-class object
● Fluent interfaces
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Tools

● Syntax highlighting in most editors
● JSLint is a great code checker

● http://jslint.com/
● Easy to run using Rhino and integrate with Emacs

● Firebug has a nice Javascript debugger
● http://getfirebug.com/

● Web developers: use a framework:
● Jquery - http://jquery.com/
● Prototype - http://prototypejs.org/

● YUI - http://developer.yahoo.com/yui/
● Dojo - http://www.dojotoolkit.org/

● Underscore - http://documentcloud.github.com/underscore/

http://jslint.com/
http://getfirebug.com/
http://jquery.com/
http://prototypejs.org/
http://developer.yahoo.com/yui/
http://www.dojotoolkit.org/
http://documentcloud.github.com/underscore/
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Agenda – after lunch

● JavaScript and the browser
● Interaction with DOM
● JSON
● AJAX

● Moderne web programming
● Jquery

● Back-end programming
● Node.js
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Features

● Dynamic
● Extending and modifying a running program

● Weakly typed
● Implicit type conversion
● Implicit declared variables

● Prototype-based objects
● Objects but no classes

● Functions as first-class objects
● A Function is just an object
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History and standard

● Designed by Brendan Eich (Netscape) in 1995
● Netscape Communicator 2.0b3 (December 1995)
● Internet Explorer 3.0 (August 1996)

● JavaScript is a Oracle trademark
● Standardized by ECMA

● Official name ECMAScript
● ECMA-262/ISO-16262 (1997)
● Revision 5.1 is latest revision (June 2011)
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Implementations

● Closed source
● JScript (Microsoft)
● Futhark (Opera)

● Open Source
● SpiderMonkey (Mozilla, written in C)
● Rhino (Mozilla, written in Java)
● QtScript (Nokia Troll Tech)
● JavaScriptCore (Apple)
● V8 (Google)
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Future implementations

● Just-In-Time (JIT) is becoming popular
● V8 is doing it already
● TraceMonkey and JägerMonkey (Mozilla)
● SquirrelFish (Apple)
● Carakan (Opera)
● Tamparin (Adobe and Mozilla)

● Size does matter (smaller is better)
● Transformation and compression of code
● Google Closure



 · osd12-js.odp  

Basic syntax
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Syntax – comments and lines

● Just like C
● The rest of the line: //
● Multi-line: /* */

● // is recommeded by Javascript developers
● Statement separator is ; (semicolon)
● Statements can span multiple lines
● White spaces: space and tab
● Case sensitive
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Syntax – literals

● Booleans
● Examples: true, false

● Other false values: null, NaN, '', 0, undefined

● Numbers
● Integers

– Examples: 42, 101010

● Real numbers
– Examples: 3.1415926535, 6.022e23, 6.626e-34

● Strings
● Examples: “Hello”, 'world', “Don't panic”
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Syntax - names

● Begin with a letter
● can be followed by 

letters, digits and 
underscores (_)

● Many 
implementations 
allow dollar and 
underscore as first 
character

abstract, boolean, break, byte, 
case, catch, char, const, continue, 
debugger, default, delete, do, 
double, else, enum, export, 
extends, false, final, float, for, 
function, goto, if, implements, 
import, in, instanceof, int, 
interface, long, native, new, null, 
package, private, protected, 
public, return, short, static, super, 
switch, synchronized, this, throw, 
throws, transient, true, try, typeof, 
var, volatile, void, while, with

Reserved words
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Syntax - expression

“hello “+”world”, f(42), 1.0/(x+y), -3.14, 5>7
Example: expr.js

literal

name

( )expression

operator expressionexpression

prefix expression

function call
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Syntax – expression

● typeof(·) returns type of the argument as string
● undefined, boolean, number, string, object, function

● Equality: === and !==

● Inequality: <, >, >=, <=

● Logical: && (and), || (or), ! (not)

● Arithmetic: +, -, *, /, %

● String concatenation: +

● += and -= can be used (but not recommended)
Example: opers.js
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== vs ===

● == compares values

● === compares values and types

● Similar for != and !==

● Recommendation: use === and !==
Example: equal.js
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Arrays

● Two ways to create an array
● Recommended: a = [2.7182, 3.1415]
● a = new Array()

● Zero based index
● Elements do not have to be of the same type
● Indirection by []

● Property length is the number of elements
Example: array.js
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Procedural programming
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Procedural programming

● Declare variables
● Only global name space
● No late declarations

– Visible in all function
● Interpreter deduces type at runtime

name expressionvar =

,
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Blocks

● Block is similar to blocks in C
● But they do not declare a scope
● Variables are visible before and after the block
● Advice: declare all variables in the top of functions 

{ }statements
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Branches

● Falsy values for an expression:
● false, null, undefined, '', 0, NaN
● All other values are true

Example: if.js

( )expression block else blockif
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Other branches

● The switch construct is similar to C
● Case expressions can be variable
● And can be a number or a string
● Each case must be terminated by break

switch (c) {

  case 'A': 

    break;

}
Example: switch.js
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Loops

● Four loops constructions exist
● Execute while an expression is true

– Zero or more times

● do while an expression is true
– At least one time

● A for loop while in C

● A for each (for ... in) style of loop
– Order is not garantied 

Example: loops.js
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Exceptions

● Execution of a block (try)

● All exceptions handled (catch)

● by an exception object (name) 

●  Any object can be used as exception (throw)
Example: exception.js

)(try block catch blockname

throw expression ;
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Functions

● Recursion is allowed
● Functions can be embedded within function 

(local function)
● Any object can be returned

function name

statements

( )name

,

{ }



 · osd12-js.odp  

Objects
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Objects

● Basic object concepts
● Javascript has objects
● Javascript has no classes

● Mother of all objects: Object

● Everything is an object
● Booleans, numbers, strings, arrays, functions

● An object is a set of properties or key/value pairs 
● Values can be all kind of objects



 · osd12-js.odp  

Objects

● Create an object: new Object()

● Indirection: . (dot) or []

● Remove a property using delete

● No protection of properties
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Methods

● Values can be (anonymous) functions
● We call them methods

● The keyword this refers to the object in 
methods

● Methods can have internal (aux) functions
Example: objects.js
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Simple constructor

● Define a function

function Graph(title) {

  this.title = title;

}

var g = new Graph('TT');

● Use capital letters for such objects!

Example: constructor.js
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Prototype

● Every object has a link to a 
parent
● The property is named 
prototype

● Differential inheritance
● New object is specified by the 

difference from its 
prototype/parent

● A long chain of prototypes 
(delegation)

Figure
show()

Square
area()

Box
position()
area()

prototype

prototype

Square.show()Example: differential.js and prototyping.js
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Reflection and Enumeration

● typeof returns the type of an object (as string)

● The method hasOwnProperty returns true if object 
(and not parent) has property

● Operator in can give you all properties

for (name in obj) {

  if (typeof(obj[name]) !== 'function') {

    console.log(name+': '+obj[name]);

  }

}
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Example: graphs

● A graph is
● A set of nodes and a set of edges (between nodes)

● Directed Acyclic Graph (DAG)
● Edges have a direction
● And no loops
● Often used for dependency analysis

Emacs Cario

GTK

libc

glib

Example: graph.js
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Fluent interfaces

● Common in OOP and JavaScript
● Coined by Martin Fowler
● Chaining method invocations 

       more readable code
● Every method returns reference to object

Examle: fluent.js
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Functions
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Functions

● Functions are objects
● Functions can be arguments to 

functions
● And return value

● Scope is a bit tricky
● Function scope and not block scope
● Inner functions can access outer 

function's variables
function foo

Function

Object
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Anonymous

● Function without a name
● Assign as object to variable
● Useful for callbacks

Example: anonymous.js
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Arguments

● Listed and named parameters are most 
common

● Array arguments stores all parameters
● Variable number of arguments
● Order of parameters and array matches
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The meaning of this

● Implicit parameter this refers to the current 
context

● Four different invocation patterns
● Method
● Function
● Constructor
● Apply

● Current context depends on invocation pattern
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Invocation - Method

● Property in an object
● Key concept in OOP

● . (dot) is used to refer to function

● this is set to the object
● Binding of this is done at invocation time

● Access to properties added after adding method
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Invocation - Function

● Classical procedural programming
● This is set to global scope
● Even for inner functions

● Work-around is to save a reference to this
● First statements of outer function:

var that;

that = this;

Example: inner.js
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Invocation - Constructor

● Functions can be used as constructors
● The new operator create an object
● Function's prototype is used
● this is set to the object

● return will return the object (this)

● Close to class-based OOP



 · osd12-js.odp  

Invocation - Apply

● The Function object has an apply method
● Yes, functions have methods

● apply has two parameters
● Context – or just simply this
● Arguments – stored in arguments

Example: apply.js
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Closure

● Functions have access to the context when 
created

● Context will live as long as the function
● Useful patterns

● Return a function 
● Callbacks

– Anonymous function as parameter to function
– Has access to context

Example: closure.js
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Functional programming

● Currying and closures
● Rewrite functions:
● Compose functions: 
● Extend Function with a curry method

Examples: highfunc.js

g x  y= f x , y 

h= f ° g
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JavaScript and the browser
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Debugging

● Firebug is an excellent tool
● Debugger (break point, single stepping)
● HTML and CSS inspector
● Network analysis

● Cool extensions
● Yslow – give suggesting for better performance
● FireRainbow – syntax highlighting
● FireQuery for jQuery users
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Document Object Model

● HTML can be a 
strict file format

● Browsers read 
and parse HTML

● Creates a object 
tree – aka DOM

● Viewed in Firebug

<table>

<tr><td>X</td><td>Y</td></tr>

<tr><td>A</td><td>B</td></tr>

</table>

td

tr tr

td td

table

td
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DOM and JavaScript

● JavaScript has a runtime library to perform 
DOM manipulations

● document is the root

● Give relevant HTML elements an ID
● onClick property useful

● Rich API
● getElementById, appendChild, 
removeChild, createElement

Example: dom.html
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JavaScript Object Notation (JSON)
● Serialization format for JavaScript objects

● Text representation of object

● Useful for client/server communication
● Supported by most programming languages

string value{ }:

,
[ ]value

,

Object
Array
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JSON

● Browsers have a JSON object
● stringify – create JSON representation

● parse – create an object
Example: json.js
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AJAX

● Asynchronous Javascript And XML
● Main concepts

● Client-side communication with server
● Update DOM – not reload page
● Smaller, well defined backend functions

● XMLHttpRequest object is the core technology
● Web applications look and feel like desktop 

applications
Example: ajax-generic.js, ajax-calc.js, calc.php, calc.html
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Backend

● Server-side programming in any language
● Perl, Python, Java, C#

● PHP offers many nice features
● Parsing of query parameters
● JSON

– json_decode creates PHP objects

– json_encode serializes PHP_objects

– They are slow – use only for small objects!
● Access to libraries (MySQL, etc.)
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Third party libraries

● Open Source libraries try to make cross browser 
development easier

● Prototype
● Early adaptor – basic functionality
● Scriptacuous (and others) – effects

● jQuery
● Heavily used today
● Drupal, Microsoft, and others

● YUI – Yahoo! Library
● Dojo – avanced but hard to learn
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jQuery

● DOM manipulations
● Forms
● Events
● AJAX
● Fluent interface

● $(document.body).css(“background”, 
“black”)

● Fancy effects (folding, etc.)
● Cool stuff (drag-n-drop, etc.)
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DOM

● $() selects elements based on

● Style class

● Element ID

● Create and add new elements
● .append – add DOM elements after

● .prepend – add DOM element before

● .html – add raw HTML

● Delete elements
● .remove – remove elements and it's children

● .empty – remove child nodes

● Style
● .css – sets using CSS

●
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Selectors

● $(…) is the key function in jQuery

● Select DOM elements using CSS selectors
● $(…)returns an array of matching elements

Selector Description

'#id' Elements' ID attribute

'.class' CSS class

'*' All elements

'[attr=”value”]' Attribute matching

'tag' Matching HTML tags

Example: selector.html

Expresion Description

parent > child Work on subtree

attr$=”value” Match at end

attr^=”value” Match at start

attr*=”value” Substring match
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Useful methods

● Each – iterator using anonymous function
● Append – add an element
● Remove – delete an element
● Empty – delete all element
● Html – get or set raw inner HTML of element
● Val – get or set the value
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Effects

Methods Effect

show/hide/toogle visibility

fadeIn/fadeOut/fadeToogle Visibility - gradually

slideUp/slideDown/slideToogle Visibility - rolling

delay Pause queue execution

● A queue of effects is maintained

Effects have optional timing parameter
● Integer (ms), slow (600 ms), fast (200 ms) 

● Effects can be stopped and dequeued
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Events

● Events trigger callback functions
● Anonymous functions are ideal candidates

● Method bind can add a callback function to 
any element
● click and submit are common events

● $(this) is DOM element as jQuery object

● Method unbind removes trigger 
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Forms

● Use a selector to find all input elements
● Method serialize is smarter

● Find input elements
● Creates a URL string for the values

● Method serializeArray returns an array
● (name, value) pairs

● val returns value of first element
Example: form.html
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AJAX

● $.ajax is your friend
● $.ajax(url, { })

● It's a remote procedure call/remote method 
invokation

● Three important options
● URL – address of backend function
● data – the parameters

● success – call back function
Example: jquery-ajax.html, calc2.php
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Drag-n-drop

● Tracking all mouse events
● Mouse down to grab element
● Follow mouse movement – pixel by pixel
● Mouse released to drop element

⇒ Many lines of code
● JQuery simplifies it

● Define areas (source and destination)
● Use draggable and droppable 

Example: drag-n-drop.html
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JavaScript on the server



 · osd12-js.odp  

Node.js

● Server-side programming
● Based on Google's V8 engine
● Event-driven, non-blocking I/O
● Used by Google, Microsoft, eBay, LinkedIn, 

Yahoo!
● Modules for

● TCP listeners, buffers, streams, file I/O, etc.

● Third party modules
● MySQL, RabbitMQ, ncurses, etc.
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Basic use

● Installation
● ./configure; make ; make install – 

compiles many C++ files!
● Or binary packages (Windows, OS X, some Linux 

distros)

● The node or nodejs program is the main 
program

● Load modules using require

var foo = require('foo')
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Modules

● NODE_PATH sets the path for global modules 

● Either low level C++ modules
● This is hard work!

● Or written in JavaScript
● Export is used to export functions
● Require is cached
● And cycles can be detected

Example: diff.js, use-diff.js
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Events

● Objects emit events
● When a connection is opened (server)
● When a file is opened (file system)

● Add an event listener to handle events
● Use addListener or on
● And removeListener when you don't need it

● Just like in the browser
Example: cat.js



 · osd12-js.odp  

Networking

● Node.js offers various server classes
● net is a general TCP server

● http and https are for web servers

● cluster can spawn multiple listeners

● Clients can be written as well
● dns for name look ups

● UDP is also supported through dgram
Example: node-http.js
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Get on

● http://ajaxian.com is a great news site for 
Javascript developers

● Introduktion til Javascript by K. Geisshirt. Libris, 
2010.

● JavaScript: The Good Parts by D. Crockford. 
O'Reilly, 2008

● Webmaster in a nutshell by R. Eckstein and S. 
Spainhour. O'Reilly, 2002

● http://www.wikipedia.org/Javascript

http://ajaxian.com/
http://www.wikipedia.org/Javascript
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Summary

● Javascript supports three programming 
paradigms
● Procedural
● Object-oriented
● Functional

● Under active development
● Revision of the standard
● New engines
● Many frameworks
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