
 · osd12-js.odp

Introduction to JavaScript
For

Modern Software Development

Kenneth Geisshirt
http://kenneth.geisshirt.dk/

http://kenneth.geisshirt.dk/

 · osd12-js.odp

Agenda – before lunch

● History and standard
● Implementations
● Tools
● Syntax
● Procedural programming
● Object-orientation
● Functions as first-class object
● Fluent interfaces

 · osd12-js.odp

Tools

● Syntax highlighting in most editors
● JSLint is a great code checker

● http://jslint.com/
● Easy to run using Rhino and integrate with Emacs

● Firebug has a nice Javascript debugger
● http://getfirebug.com/

● Web developers: use a framework:
● Jquery - http://jquery.com/
● Prototype - http://prototypejs.org/

● YUI - http://developer.yahoo.com/yui/
● Dojo - http://www.dojotoolkit.org/

● Underscore - http://documentcloud.github.com/underscore/

http://jslint.com/
http://getfirebug.com/
http://jquery.com/
http://prototypejs.org/
http://developer.yahoo.com/yui/
http://www.dojotoolkit.org/
http://documentcloud.github.com/underscore/

 · osd12-js.odp

Agenda – after lunch

● JavaScript and the browser
● Interaction with DOM
● JSON
● AJAX

● Moderne web programming
● Jquery

● Back-end programming
● Node.js

 · osd12-js.odp

Features

● Dynamic
● Extending and modifying a running program

● Weakly typed
● Implicit type conversion
● Implicit declared variables

● Prototype-based objects
● Objects but no classes

● Functions as first-class objects
● A Function is just an object

 · osd12-js.odp

History and standard

● Designed by Brendan Eich (Netscape) in 1995
● Netscape Communicator 2.0b3 (December 1995)
● Internet Explorer 3.0 (August 1996)

● JavaScript is a Oracle trademark
● Standardized by ECMA

● Official name ECMAScript
● ECMA-262/ISO-16262 (1997)
● Revision 5.1 is latest revision (June 2011)

 · osd12-js.odp

Implementations

● Closed source
● JScript (Microsoft)
● Futhark (Opera)

● Open Source
● SpiderMonkey (Mozilla, written in C)
● Rhino (Mozilla, written in Java)
● QtScript (Nokia Troll Tech)
● JavaScriptCore (Apple)
● V8 (Google)

 · osd12-js.odp

Future implementations

● Just-In-Time (JIT) is becoming popular
● V8 is doing it already
● TraceMonkey and JägerMonkey (Mozilla)
● SquirrelFish (Apple)
● Carakan (Opera)
● Tamparin (Adobe and Mozilla)

● Size does matter (smaller is better)
● Transformation and compression of code
● Google Closure

 · osd12-js.odp

Basic syntax

 · osd12-js.odp

Syntax – comments and lines

● Just like C
● The rest of the line: //
● Multi-line: /* */

● // is recommeded by Javascript developers
● Statement separator is ; (semicolon)
● Statements can span multiple lines
● White spaces: space and tab
● Case sensitive

 · osd12-js.odp

Syntax – literals

● Booleans
● Examples: true, false

● Other false values: null, NaN, '', 0, undefined

● Numbers
● Integers

– Examples: 42, 101010

● Real numbers
– Examples: 3.1415926535, 6.022e23, 6.626e-34

● Strings
● Examples: “Hello”, 'world', “Don't panic”

 · osd12-js.odp

Syntax - names

● Begin with a letter
● can be followed by

letters, digits and
underscores (_)

● Many
implementations
allow dollar and
underscore as first
character

abstract, boolean, break, byte,
case, catch, char, const, continue,
debugger, default, delete, do,
double, else, enum, export,
extends, false, final, float, for,
function, goto, if, implements,
import, in, instanceof, int,
interface, long, native, new, null,
package, private, protected,
public, return, short, static, super,
switch, synchronized, this, throw,
throws, transient, true, try, typeof,
var, volatile, void, while, with

Reserved words

 · osd12-js.odp

Syntax - expression

“hello “+”world”, f(42), 1.0/(x+y), -3.14, 5>7
Example: expr.js

literal

name

()expression

operator expressionexpression

prefix expression

function call

 · osd12-js.odp

Syntax – expression

● typeof(·) returns type of the argument as string
● undefined, boolean, number, string, object, function

● Equality: === and !==

● Inequality: <, >, >=, <=

● Logical: && (and), || (or), ! (not)

● Arithmetic: +, -, *, /, %

● String concatenation: +

● += and -= can be used (but not recommended)
Example: opers.js

 · osd12-js.odp

== vs ===

● == compares values

● === compares values and types

● Similar for != and !==

● Recommendation: use === and !==
Example: equal.js

 · osd12-js.odp

Arrays

● Two ways to create an array
● Recommended: a = [2.7182, 3.1415]
● a = new Array()

● Zero based index
● Elements do not have to be of the same type
● Indirection by []

● Property length is the number of elements
Example: array.js

 · osd12-js.odp

Procedural programming

 · osd12-js.odp

Procedural programming

● Declare variables
● Only global name space
● No late declarations

– Visible in all function
● Interpreter deduces type at runtime

name expressionvar =

,

 · osd12-js.odp

Blocks

● Block is similar to blocks in C
● But they do not declare a scope
● Variables are visible before and after the block
● Advice: declare all variables in the top of functions

{ }statements

 · osd12-js.odp

Branches

● Falsy values for an expression:
● false, null, undefined, '', 0, NaN
● All other values are true

Example: if.js

()expression block else blockif

 · osd12-js.odp

Other branches

● The switch construct is similar to C
● Case expressions can be variable
● And can be a number or a string
● Each case must be terminated by break

switch (c) {

 case 'A':

 break;

}
Example: switch.js

 · osd12-js.odp

Loops

● Four loops constructions exist
● Execute while an expression is true

– Zero or more times

● do while an expression is true
– At least one time

● A for loop while in C

● A for each (for ... in) style of loop
– Order is not garantied

Example: loops.js

 · osd12-js.odp

Exceptions

● Execution of a block (try)

● All exceptions handled (catch)

● by an exception object (name)

● Any object can be used as exception (throw)
Example: exception.js

)(try block catch blockname

throw expression ;

 · osd12-js.odp

Functions

● Recursion is allowed
● Functions can be embedded within function

(local function)
● Any object can be returned

function name

statements

()name

,

{ }

 · osd12-js.odp

Objects

 · osd12-js.odp

Objects

● Basic object concepts
● Javascript has objects
● Javascript has no classes

● Mother of all objects: Object

● Everything is an object
● Booleans, numbers, strings, arrays, functions

● An object is a set of properties or key/value pairs
● Values can be all kind of objects

 · osd12-js.odp

Objects

● Create an object: new Object()

● Indirection: . (dot) or []

● Remove a property using delete

● No protection of properties

 · osd12-js.odp

Methods

● Values can be (anonymous) functions
● We call them methods

● The keyword this refers to the object in
methods

● Methods can have internal (aux) functions
Example: objects.js

 · osd12-js.odp

Simple constructor

● Define a function

function Graph(title) {

 this.title = title;

}

var g = new Graph('TT');

● Use capital letters for such objects!

Example: constructor.js

 · osd12-js.odp

Prototype

● Every object has a link to a
parent
● The property is named
prototype

● Differential inheritance
● New object is specified by the

difference from its
prototype/parent

● A long chain of prototypes
(delegation)

Figure
show()

Square
area()

Box
position()
area()

prototype

prototype

Square.show()Example: differential.js and prototyping.js

 · osd12-js.odp

Reflection and Enumeration

● typeof returns the type of an object (as string)

● The method hasOwnProperty returns true if object
(and not parent) has property

● Operator in can give you all properties

for (name in obj) {

 if (typeof(obj[name]) !== 'function') {

 console.log(name+': '+obj[name]);

 }

}

 · osd12-js.odp

Example: graphs

● A graph is
● A set of nodes and a set of edges (between nodes)

● Directed Acyclic Graph (DAG)
● Edges have a direction
● And no loops
● Often used for dependency analysis

Emacs Cario

GTK

libc

glib

Example: graph.js

 · osd12-js.odp

Fluent interfaces

● Common in OOP and JavaScript
● Coined by Martin Fowler
● Chaining method invocations

 more readable code
● Every method returns reference to object

Examle: fluent.js

 · osd12-js.odp

Functions

 · osd12-js.odp

Functions

● Functions are objects
● Functions can be arguments to

functions
● And return value

● Scope is a bit tricky
● Function scope and not block scope
● Inner functions can access outer

function's variables
function foo

Function

Object

 · osd12-js.odp

Anonymous

● Function without a name
● Assign as object to variable
● Useful for callbacks

Example: anonymous.js

 · osd12-js.odp

Arguments

● Listed and named parameters are most
common

● Array arguments stores all parameters
● Variable number of arguments
● Order of parameters and array matches

 · osd12-js.odp

The meaning of this

● Implicit parameter this refers to the current
context

● Four different invocation patterns
● Method
● Function
● Constructor
● Apply

● Current context depends on invocation pattern

 · osd12-js.odp

Invocation - Method

● Property in an object
● Key concept in OOP

● . (dot) is used to refer to function

● this is set to the object
● Binding of this is done at invocation time

● Access to properties added after adding method

 · osd12-js.odp

Invocation - Function

● Classical procedural programming
● This is set to global scope
● Even for inner functions

● Work-around is to save a reference to this
● First statements of outer function:

var that;

that = this;

Example: inner.js

 · osd12-js.odp

Invocation - Constructor

● Functions can be used as constructors
● The new operator create an object
● Function's prototype is used
● this is set to the object

● return will return the object (this)

● Close to class-based OOP

 · osd12-js.odp

Invocation - Apply

● The Function object has an apply method
● Yes, functions have methods

● apply has two parameters
● Context – or just simply this
● Arguments – stored in arguments

Example: apply.js

 · osd12-js.odp

Closure

● Functions have access to the context when
created

● Context will live as long as the function
● Useful patterns

● Return a function
● Callbacks

– Anonymous function as parameter to function
– Has access to context

Example: closure.js

 · osd12-js.odp

Functional programming

● Currying and closures
● Rewrite functions:
● Compose functions:
● Extend Function with a curry method

Examples: highfunc.js

g x y= f x , y

h= f ° g

 · osd12-js.odp

JavaScript and the browser

 · osd12-js.odp

Debugging

● Firebug is an excellent tool
● Debugger (break point, single stepping)
● HTML and CSS inspector
● Network analysis

● Cool extensions
● Yslow – give suggesting for better performance
● FireRainbow – syntax highlighting
● FireQuery for jQuery users

 · osd12-js.odp

Document Object Model

● HTML can be a
strict file format

● Browsers read
and parse HTML

● Creates a object
tree – aka DOM

● Viewed in Firebug

<table>

<tr><td>X</td><td>Y</td></tr>

<tr><td>A</td><td>B</td></tr>

</table>

td

tr tr

td td

table

td

 · osd12-js.odp

DOM and JavaScript

● JavaScript has a runtime library to perform
DOM manipulations

● document is the root

● Give relevant HTML elements an ID
● onClick property useful

● Rich API
● getElementById, appendChild,
removeChild, createElement

Example: dom.html

 · osd12-js.odp

JavaScript Object Notation (JSON)
● Serialization format for JavaScript objects

● Text representation of object

● Useful for client/server communication
● Supported by most programming languages

string value{ }:

,
[]value

,

Object
Array

 · osd12-js.odp

JSON

● Browsers have a JSON object
● stringify – create JSON representation

● parse – create an object
Example: json.js

 · osd12-js.odp

AJAX

● Asynchronous Javascript And XML
● Main concepts

● Client-side communication with server
● Update DOM – not reload page
● Smaller, well defined backend functions

● XMLHttpRequest object is the core technology
● Web applications look and feel like desktop

applications
Example: ajax-generic.js, ajax-calc.js, calc.php, calc.html

 · osd12-js.odp

Backend

● Server-side programming in any language
● Perl, Python, Java, C#

● PHP offers many nice features
● Parsing of query parameters
● JSON

– json_decode creates PHP objects

– json_encode serializes PHP_objects

– They are slow – use only for small objects!
● Access to libraries (MySQL, etc.)

 · osd12-js.odp

Third party libraries

● Open Source libraries try to make cross browser
development easier

● Prototype
● Early adaptor – basic functionality
● Scriptacuous (and others) – effects

● jQuery
● Heavily used today
● Drupal, Microsoft, and others

● YUI – Yahoo! Library
● Dojo – avanced but hard to learn

 · osd12-js.odp

jQuery

● DOM manipulations
● Forms
● Events
● AJAX
● Fluent interface

● $(document.body).css(“background”,
“black”)

● Fancy effects (folding, etc.)
● Cool stuff (drag-n-drop, etc.)

 · osd12-js.odp

DOM

● $() selects elements based on

● Style class

● Element ID

● Create and add new elements
● .append – add DOM elements after

● .prepend – add DOM element before

● .html – add raw HTML

● Delete elements
● .remove – remove elements and it's children

● .empty – remove child nodes

● Style
● .css – sets using CSS

●

 · osd12-js.odp

Selectors

● $(…) is the key function in jQuery

● Select DOM elements using CSS selectors
● $(…)returns an array of matching elements

Selector Description

'#id' Elements' ID attribute

'.class' CSS class

'*' All elements

'[attr=”value”]' Attribute matching

'tag' Matching HTML tags

Example: selector.html

Expresion Description

parent > child Work on subtree

attr$=”value” Match at end

attr^=”value” Match at start

attr*=”value” Substring match

 · osd12-js.odp

Useful methods

● Each – iterator using anonymous function
● Append – add an element
● Remove – delete an element
● Empty – delete all element
● Html – get or set raw inner HTML of element
● Val – get or set the value

 · osd12-js.odp

Effects

Methods Effect

show/hide/toogle visibility

fadeIn/fadeOut/fadeToogle Visibility - gradually

slideUp/slideDown/slideToogle Visibility - rolling

delay Pause queue execution

● A queue of effects is maintained

Effects have optional timing parameter
● Integer (ms), slow (600 ms), fast (200 ms)

● Effects can be stopped and dequeued

 · osd12-js.odp

Events

● Events trigger callback functions
● Anonymous functions are ideal candidates

● Method bind can add a callback function to
any element
● click and submit are common events

● $(this) is DOM element as jQuery object

● Method unbind removes trigger

 · osd12-js.odp

Forms

● Use a selector to find all input elements
● Method serialize is smarter

● Find input elements
● Creates a URL string for the values

● Method serializeArray returns an array
● (name, value) pairs

● val returns value of first element
Example: form.html

 · osd12-js.odp

AJAX

● $.ajax is your friend
● $.ajax(url, { })

● It's a remote procedure call/remote method
invokation

● Three important options
● URL – address of backend function
● data – the parameters

● success – call back function
Example: jquery-ajax.html, calc2.php

 · osd12-js.odp

Drag-n-drop

● Tracking all mouse events
● Mouse down to grab element
● Follow mouse movement – pixel by pixel
● Mouse released to drop element

⇒ Many lines of code
● JQuery simplifies it

● Define areas (source and destination)
● Use draggable and droppable

Example: drag-n-drop.html

 · osd12-js.odp

JavaScript on the server

 · osd12-js.odp

Node.js

● Server-side programming
● Based on Google's V8 engine
● Event-driven, non-blocking I/O
● Used by Google, Microsoft, eBay, LinkedIn,

Yahoo!
● Modules for

● TCP listeners, buffers, streams, file I/O, etc.

● Third party modules
● MySQL, RabbitMQ, ncurses, etc.

 · osd12-js.odp

Basic use

● Installation
● ./configure; make ; make install –

compiles many C++ files!
● Or binary packages (Windows, OS X, some Linux

distros)

● The node or nodejs program is the main
program

● Load modules using require

var foo = require('foo')

 · osd12-js.odp

Modules

● NODE_PATH sets the path for global modules

● Either low level C++ modules
● This is hard work!

● Or written in JavaScript
● Export is used to export functions
● Require is cached
● And cycles can be detected

Example: diff.js, use-diff.js

 · osd12-js.odp

Events

● Objects emit events
● When a connection is opened (server)
● When a file is opened (file system)

● Add an event listener to handle events
● Use addListener or on
● And removeListener when you don't need it

● Just like in the browser
Example: cat.js

 · osd12-js.odp

Networking

● Node.js offers various server classes
● net is a general TCP server

● http and https are for web servers

● cluster can spawn multiple listeners

● Clients can be written as well
● dns for name look ups

● UDP is also supported through dgram
Example: node-http.js

 · osd12-js.odp

Get on

● http://ajaxian.com is a great news site for
Javascript developers

● Introduktion til Javascript by K. Geisshirt. Libris,
2010.

● JavaScript: The Good Parts by D. Crockford.
O'Reilly, 2008

● Webmaster in a nutshell by R. Eckstein and S.
Spainhour. O'Reilly, 2002

● http://www.wikipedia.org/Javascript

http://ajaxian.com/
http://www.wikipedia.org/Javascript

 · osd12-js.odp

Summary

● Javascript supports three programming
paradigms
● Procedural
● Object-oriented
● Functional

● Under active development
● Revision of the standard
● New engines
● Many frameworks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

