
Building parsers in
JavaScript

Kenneth Geisshirt

kneth

kgeisshirt

Agenda

● What is parsing?
● Fractions
● Nearley
● Example: Fraction calculator

Rajiv Patel, https://tinyurl.com/yx6rmcdt

What is parsing?

You know the problem
● What is syntax?
● How is the syntax defined?
● How do you check if input

matches syntax?
● How can you use the syntax

in your applications?

https://xkcd.com/859/

https://xkcd.com/859/

Grammar
● The syntax is defined by a grammar
● Lexical analysis breaks down input into

tokens or terminals
○ Keywords, literals, identifiers, operators

● A set of rules connecting non-terminals to
tokens

● One non-terminal is the start symbol
● Parsers are software which use a grammar

to verify input

keyword
identifier

Body: statements

Example

● S → AA

● A → 𝞪
● A → 𝞫

Matches 𝞪𝞪, 𝞪𝞫, 𝞫𝞪, and 𝞫𝞫

function add2(n) {
 let r = n + 2;
 return r;
}

Ken Whytock, https://tinyurl.com/s9s3eee

literal

https://tinyurl.com/s9s3eee

Parser generators
● Many well-documented algorithms exist

○ Hot research topics in 1960s and 1970s

● It’s not a trivial task to write a parser
● Parser generators can speed up development

process
○ Yacc (C) - 1975!!
○ ANTLR (mostly Java) - 1989
○ Nearley (JavaScript) - 2014

Erica Zabowski, https://tinyurl.com/uqbaldv

https://tinyurl.com/uqbaldv

Fractions

Quick recap

● A fraction is a rational number
○ Numerator and denominator, both natural numbers
○ Broken latin (fractus, broken)

● Fractions are rational numbers

Bill Ward, https://tinyurl.com/r3dtp2b

https://tinyurl.com/r3dtp2b

Arithmetic

Greatest Common Divisor
● Original algorithm by Euclid (c. 300 BC)
● Often used to reduce or simplify a fraction
● https://en.wikipedia.org/wiki/Greatest_common_divisor

https://en.wikipedia.org/wiki/Greatest_common_divisor

Nearley

Earley Parsers in JavaScript
● Nearley implements Earley’s parser algorithm

○ Left-recursive (LR) grammars
○ Deterministic parser
○ Worst-case performance O(n3) but O(n) for well-behaving grammars
○ https://en.wikipedia.org/wiki/Earley_parser

● Can generate JavaScript, CoffeeScript, and TypeScript
○ Can run in browsers, node.js and probably React Native

● Inclusion of predefined grammars
○ Numbers, white spaces, strings

● Lexer is also included
○ Define tokens using double-quotes

● Rules can have (semantic) actions
○ Plain JavaScript functions

https://en.wikipedia.org/wiki/Earley_parser

How to use
● Easy installation: npm install nearley --save-dev
● Generate a parser: npx nearleyc -o parser.js parser.ne

○ Add to scripts in package.json

● The .ne files contains rules, terminals, non-terminals, and actions

expr -> "(" _ sum _ ")" {% function (d) { return d[2]; }
%}
 | value {% function (d) { return d[0]; }
%}

Non-terminal Terminal Whitespace Action The return value
from the sum rule

Additional tools
Supported by many editors
● VS Code, Atom, Emacs, Vim, Sublime

Railroad diagrams

Example:
Fraction
calculator

kalculator
● Simple Fraction class

○ Basic arithmetic and simplification

● Parser
○ Actions to perform calculation

● Little driver to read input and call parser

The grammar (no actions)
main → sum
expr → (sum)
 | value
product → product * expr
 | product / expr
 | value
sum → sum + expr
 | sum - expr
 | product
value → fraction
 | int
fraction → int / int

Start symbol: main
Tokens: (,), +, -, *, /
Positive integer: int

Important take-aways
● Recursive rules
● Operator precedence

Source code:
parser.ne

Source code: kalc.js

Resources

Links
● My example: https://github.com/kneth/kalculator
● Nearley: https://nearley.js.org/

● Earley parsers explained: http://loup-vaillant.fr/tutorials/earley-parsing/
● An Efficient Context-Free Parsing Algorithm. Jay Earley’s Ph.D. thesis from

1968.
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr/ftp/scan/CMU-CS-68-earl
ey.pdf

https://github.com/kneth/kalculator
https://nearley.js.org/
http://loup-vaillant.fr/tutorials/earley-parsing/
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr/ftp/scan/CMU-CS-68-earley.pdf
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr/ftp/scan/CMU-CS-68-earley.pdf

Building parsers
for JavaScript is
easy - and fun

Ron Mader, https://tinyurl.com/sg5pdwn

