
Building, testing, and releasing a
multiplatform SDK using GitHub
Actions

Kenneth Geisshirt
Lead Engineer @ MongoDB
https://github.com/kneth

CopenhagenJS
September 2023

https://github.com/kneth

Agenda
● About Realm JavaScript
● Continuous Integration and Delivery
● What is GitHub Actions?
● Our workflows in a nutshell
● Using caching to speed things up

About Realm JavaScript - 1
● Realm is an object database

○ Full ACID
○ Advanced query engine

● Synchronization with MongoDB
○ Object-Document Mapper
○ Eventually consistent

● Realm JavaScript is a JavaScript/TypeScript
SDK for Realm

● Tight integration with JavaScript engines
○ V8 - node.js + Electron (Linux, Windows,

MacOS)
○ JavaScriptCore and Hermes - React

Native (iOS and Android)

let realm = await Realm.open({ schema: [Car] });
realm.write(() => {
 realm.create(Car, {
 make: “Opel”,
 model: “Astra”,
 miles: 10543 });
});
let opels = realm.objects(Car).filtered(“make == ‘Opel’”);
realm.close();

class Car extends Realm.Object {
 static schema = {
 name: "Car",
 properties: {
 _id: { type: 'objectId', default: () => new Realm.BSON.ObjectId() },
 make: "string",
 model: "string",
 miles: "int?",
 },
 primaryKey: '_id',
 };
}

● Realm Core is written in C++
● Integration with JS engines

○ JSI + NAPI
○ Generated C++ code

● Generate TypeScript definitions for
Realm Core

● Public API (SDK) implemented in
TypeScript

● The code generator is implemented in
TypeScript

About Realm JavaScript - 2

The architectural layers

● Generate code for multiple JavaScript engines
● Build on Windows, MacOS and Linux on same machine
● Run 870+ tests on five different operating systems
● Lint TypeScript and C++ code constantly
● Upload binaries and API documentation when releasing

No developer can manually

Automation is required

Continuous Integration and Delivery (CI/CD)

Automate everything

● Build project for all supported platform
● Lint your code source with predefined

rules
● Spawn test servers
● Run tests on all supported platform
● Publish releases on NPM
● Notifications on Slack

Realm JavaScript

● Generate C++ and TypeScript binding
using Code Generator

● Compile C++ code for five operating
systems (gcc, clang, VSC++, xcode)

● Transpile TypeScript code
● Use ESLint and clang-format
● Cache artifacts to minimize build times
● Orchestrate test servers using Docker

● Automate workflows using YAML files
○ Workflow → jobs → steps
○ Build Matrix

● Predefined Github Runners
○ Linux, Windows, MacOS
○ Commonly used software installed: C++

compilers, node/npm
● Use 3rd party actions in your workflow

○ Checkout git repository
○ Select node version

● Workflow can be triggered by events
○ New issue or pull request created
○ Commits pushed to branch
○ Periodically (cron-like)
○ Started by a user

What is GitHub Actions

name: Linting (Pull Request)
on: pull_request
concurrency:
 group: ${{ github.workflow }}-${{ github.ref }}
 cancel-in-progress: true
env:
 REALM_DISABLE_ANALYTICS: 1
jobs:
 lint:
 name: Lint
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3
 with:
 submodules: "recursive"
 - uses: actions/setup-node@v3
 with:
 node-version: 18
 - name: Install root package dependencies
 run: npm ci --ignore-scripts
 - name: Run linting of subpackages
 run: npm run lint
 - name: Run linting of C++ code
 run: npm run lint:cpp

Our workflow in a nutshell
21 workflows

● 1670 lines YAML code
● 14 build variants
● 8 test variants
● Install tests (daily against

React Native)
● Releasing

○ 3 packages to npm
○ API docs to S3

● Janitor work
○ Auto-assign PRs
○ Issue labels
○ Clean up MongoDB

clusters

Compiling ~240k lines C++ takes a while

Using caching to speed things up

- name: Get NPM cache directory
 id: npm-cache-dir
 shell: bash
 run: echo "dir=$(npm config get cache)" >>
$GITHUB_OUTPUT

- name: Restore NPM cache
 id: npm-cache
 uses: actions/cache@v3
 with:
 path: ${{ steps.npm-cache-dir.outputs.dir }}
 key: ${{ runner.os }}-node-${{
hashFiles('package-lock.json') }}
 restore-keys: |
 ${{ runner.os }}-node-

npm ci downloads half
of the internet

Or it feels like it
- name: ccache
 uses: hendrikmuhs/ccache-action@v1
 with:
 key: ${{ runner.os }}-${{ matrix.variant.os }}-${{
matrix.variant.arch }}
 max-size: '2.0G'

- name: Configure ccache
 run: ccache --set-config="compiler_check=content"

Ignoring scripts to prevent a prebuilt from getting fetched
- name: Install dependencies
 run: npm ci --ignore-scripts

build the c++ library for standard targets
- name: Build node
 if: ${{ (matrix.variant.os != 'ios') && (matrix.variant.os !=
'android') }}
 run: npm run build:node:prebuild:${{matrix.variant.arch}}
--workspace realm

Automation
is king

Learn more
● Realm JavaScript

○ https://github.com/realm/realm-js
● Official documentation

○ https://docs.github.com/actions
● Collections of actions

○ https://github.com/marketplace?type=actions
● Learning Github Actions: Automation and Integration of

Ci/Cd With Github
○ Published later this month

https://github.com/realm/realm-js
https://docs.github.com/actions
https://github.com/marketplace?type=actions

