CopenhagenJS
September 2023

Building, testing, and releasing a \
multiplatform SDK using GitHub
Actions

Kenneth Geisshirt
Lead Engineer @ MongoDB
y https://github.com/kneth

https://github.com/kneth

Agenda

e About Realm JavaScript

e Continuous Integration and Delivery
e What is GitHub Actions?

e Our workflows in a nutshell

e Using caching to speed things up

About Realm JavaScript - 1

e Realm is an object database
o Full ACID
o Advanced query engine

e Synchronization with MongoDB
o Object-Document Mapper
o Eventually consistent

e Realm JavaScript is a JavaScript/TypeScript
SDK for Realm
e Tight integration with JavaScript engines
o V8 - node.js + Electron (Linux, Windows,
MacOS)
o JavaScriptCore and Hermes - React
Native (i0S and Android)

class Car extends Realm.Object {
static schema = {
name: "Car",
properties: {
_id: { type: 'objectId', default: () => new Realm.BSON.ObjectId() 1},
make: "string",
model: "string",
miles: "int?",
3,
primaryKey: '_id',
33
3

let realm = await Realm.open({ schema: [Car] });
realm.write(() => {
realm.create(Car, {

make: “Opel”,

model: “Astra”,

miles: 10543 1});
13
let opels = realm.objects(Car).filtered(“make == ‘Opel’”);
realm.close();

About Realm JavaScript - 2
JS| (for React Native) J Realm Core ‘ NAPI (for Node.js) F’rovideclib

Realm Core is written in C++
Integration with JS engines

o JSI + NAPI

o Generated C++ code
Generate TypeScript definitions for
Realm Core
Public API (SDK) implemented in
TypeScript

The code generator is implemented in
TypeScript

JSI binding NAPI binding
TypeScript definitions

SDK

The architectural layers

Generated

Hand crafted

No developer can manually

e Generate code for multiple JavaScript engines

e Build on Windows, MacOS and Linux on same machine
e Run 870+ tests on five different operating systems

e Lint TypeScript and C++ code constantly

e Upload binaries and API documentation when releasing

Automation iIs required

Continuous Integration and Delivery (CI/CD)

Automate everything

Build project for all supported platform
Lint your code source with predefined
rules

Spawn test servers

Run tests on all supported platform
Publish releases on NPM

Notifications on Slack

Realm JavaScript

Generate C++ and TypeScript binding
using Code Generator

Compile C++ code for five operating
systems (gcc, clang, VSC++, xcode)
Transpile TypeScript code

Use ESLint and clang-format

Cache artifacts to minimize build times
Orchestrate test servers using Docker

What is GitHub Actions

Automate workflows using YAML files
o Workflow — jobs — steps
o Build Matrix
Predefined Github Runners
o Linux, Windows, MacOS
o Commonly used software installed: C++
compilers, node/npm
Use 3rd party actions in your workflow
o Checkout git repository
o Select node version
Workflow can be triggered by events
o New issue or pull request created
o Commits pushed to branch
o Periodically (cron-like)
o Started by a user

name: Linting (Pull Request)

on: pull request

concurrency:

group: ${{ github.workflow }}-${{ github.ref }}

can

el-in-progress: true

env:
REALM DISABLE ANALYTICS: 1
jobs:
lint:
name: Lint
1: ubuntu-latest

s: actions/checkout@v3
with:

submodules: "recursive"
: actions/setup-node@v3
with:

node-version: 18
- name: Install root package dependencies
run: npm ci --ignore-scripts
- name: Run linting of subpackages
run: npm run lint
- name: Run linting of C++ code
run: npm run lint:cpp

Our workflow 1n a nutshell

Re-run triggered 2 weeks ago Status Total duration Artifacts

@ kneth #6064 Success 23m 21s 2

pr-realm-js.yml

on: pull_request
Matrix: build Matrix: integration-tests

@ 14 jobs completed @ Generate Info.plist with all... 55s @ 8jobs completed

Show all jobs

Artifacts

Produced during runtime

Name Size
@ realm-js-bundles 418 MB

@ realm-js-prebuilds 154 MB

ch

21 workflows

1670 lines YAML code
14 build variants
8 test variants
Install tests (daily against
React Native)
Releasing
o 3 packages to npm
o API docs to S3
Janitor work
o Auto-assign PRs
o Issue labels
o Clean up MongoDB
clusters

Using caching to speed things up

Compiling ~240k lines C++ takes a while

- name: ccache
hendrikmuhs/ccache-action@vl

${{ runner.os }}-${{ matrix.variant.os }}-${{
matrix.variant.arch }}

max-size: '2.0G'

- name: Configure ccache

run: ccache --set-config="compiler check=content”
Ignoring scripts to prevent a prebuilt from getting fetched
- name: Install dependencies

run: npm ci --ignore-scripts
build the c+ library for standard targets

- name: Build node
if: ${{ (matrix.variant.os != 'ios') && (matrix.variant.os !=
'android') }}
run: npm run build:node:prebuild:${{matrix.variant.arch}}

--workspace realm

node_modules

npm ci downloads half
of the internet

Or it feels like it

- name: Get NPM cache directory

id: npm-cache-dir

shell: bash

run: echo "dir=$ (npm config get cache)" >>
$GITHUB OUTPUT

- name: Restore NPM cache
id: npm-cache
uses: actions/cache@v3
with:

path: ${{ steps.npm-cache-dir.outputs.dir }}

cey: ${{ runner.os }}-node-${{
hashFiles ('package-lock.json') }}

restore-keys: |
S{{ runner.os }}-node-

N

Automation
1s king

~

>
[.earn more

e Realm JavaScript
o htftps://qithub.com/realm/realm-js
e Official documentation
o https://docs.qgithub.com/actions
e Collections of actions
o https://qithub.com/marketplace?type=actions
e Learning Github Actions: Automation and Integration of

Ci/Cd With Github
o Published later this month

https://github.com/realm/realm-js
https://docs.github.com/actions
https://github.com/marketplace?type=actions

